

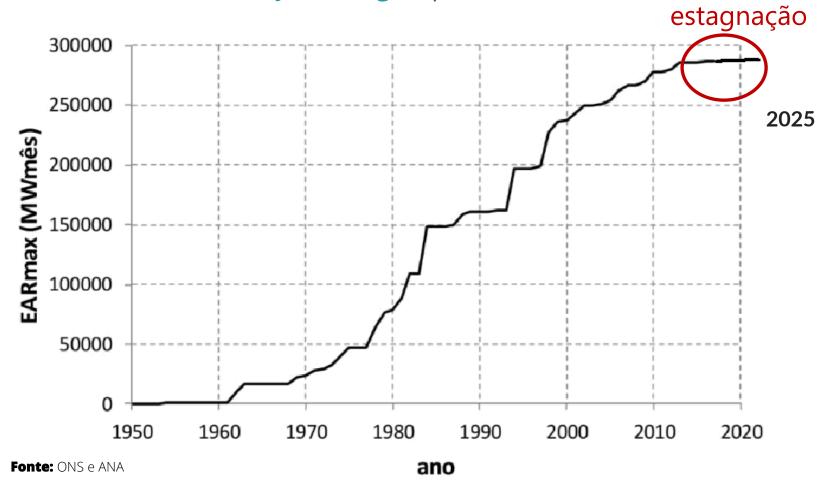
3^a AP - MP 1.304/25

Armazenamento de energia elétrica no Brasil: importância estratégica, marco legal específico e modelos de negócios para a modernização e transição energética

Sempre tivemos armazenamento no Brasil!

110 GW de hidrelétricas em operação, nossas baterias naturais.

Mas paramos de investir em armazenamento no Brasil...


Última hidrelétrica "com reservatório" foi contratada em 2013 (UHE Sinop, 402 MW).

A evolução do armazenamento de energia no SIN não acompanhou o crescimento da carga.

A importância dos reservatórios de hidrelétricas

Os reservatórios de usinas hidrelétrica são responsáveis 93% da capacidade nacional de reservação de água para todos os fins.

O armazenamento do SIN aumentou apenas 2% entre 2014 e 2023, enquanto a capacidade instalada em UHEs cresceu 36% no mesmo período.

Além da geração elétrica, os reservatórios atendem ao controle de cheias, irrigação, abastecimento público, aquicultura e potencial turístico, agregando valor socioambiental.

Expansão da matriz baseada em renováveis intermitentes na última década.

Sistema elétrico tornou-se **deficitário** em **capacidade, flexibilidade e serviços ancilares.**

O crescimento da MMGD alterou o padrão da geração, ocasionando em imprevisibilidade na operação: 43 GW sem supervisão e controle.

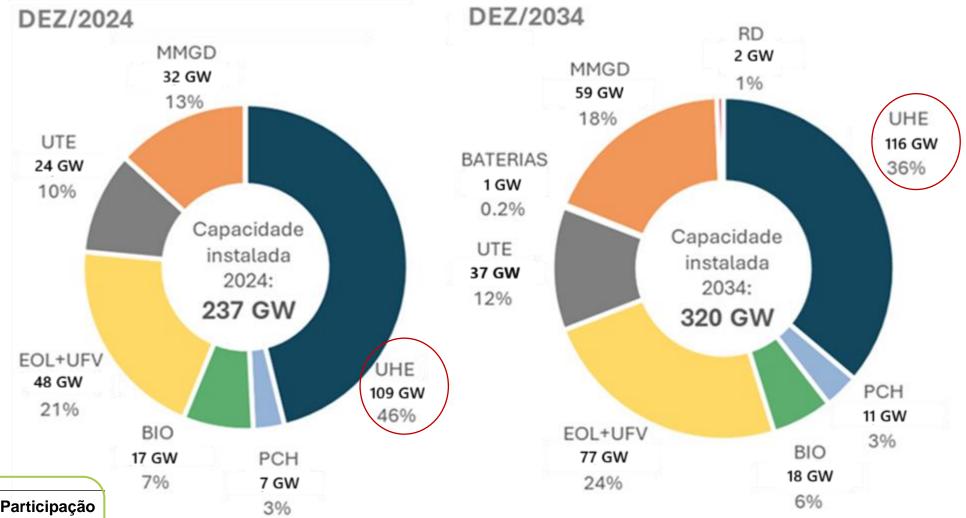
Excesso de oferta em determinadas regiões e momentos do dia resulta em *curtailment* de geração renovável centralizada (hidrelétricas, eólica e solares).

Desenhos de mercado de 2004: preços já não mais refletem a realidade do sistema.

Risco iminente de déficit de potência:

PEN ONS 2025 e PDE 2034 apontam déficits em curto prazo.

Curva do pato e **amplitudes** acentuadas projetadas pela EPE e ONS nos próximos anos, com **risco de esgotamento de flexibilidade**.



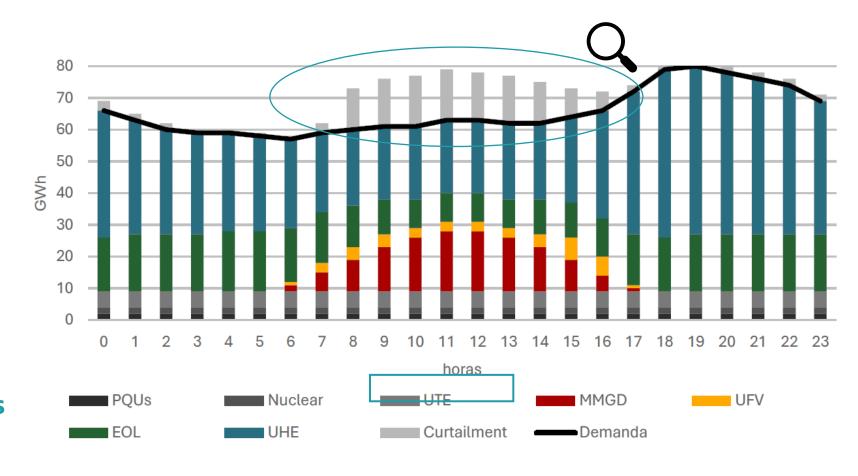
Produção de energia **longe** dos centros de **cargas**.

Crescente necessidade de expansão da **rede de transmissão**, com aumento de **custos** associados.

Matriz em 2010:

Fonte	Capacidade Instalada (MW)	Participação (%)
UHE	77.090	68%
EOL	927	1%
SOL	1	0%
UTE	29.689	26%

Sistema Interligado Nacional – Fonte: PDE 2034 (em GW)



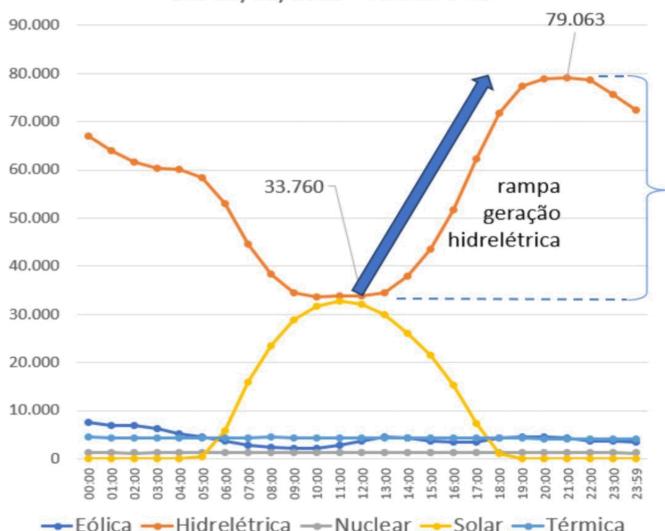
Desequilíbrio locacional e temporal entre **oferta e demanda**: curtailment.

Entre 2022 e 2024, os cortes de geração totalizaram 98 TWh, sendo 86% correspondente à energia vertida turbinável nas hidrelétricas. Suficiente para abastecer 32 milhões de habitantes durante um ano.

O corte de geração hidro implica em custo de R\$ 516 milhões/ano aos consumidores regulados (GSF) e perda de arrecadação de R\$155 milhões/ano em CFURH.

Balanço de Energia - 01/09/2024

Fonte: estudo PSR/RegE para a Abrage na CP ANEEL nº 45/2019 (3º fase)

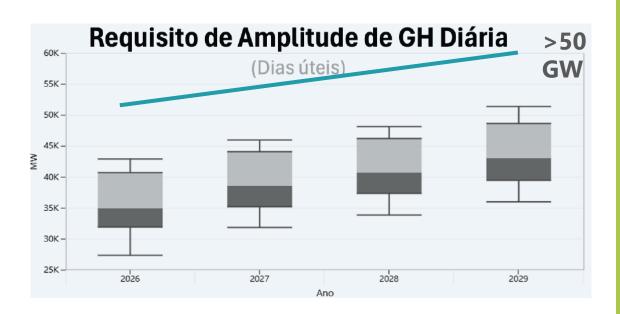

45.303

MWmed

14h-22h

Curva de Geração de Energia (MWmed)
Dia 19/01/2025 - Fonte: ONS

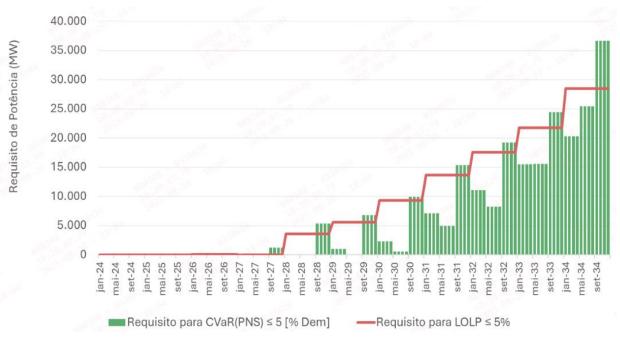
Rampa e Segurança no Suprimento de Potência


Rampa de geração hidrelétrica: 45 GWmed.

A geração hidrelétrica atende 80% da demanda nos horários de pico de consumo.

ABRAGE ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS GERADORAS DE ENERGIA ELÉTRICA

Esgostamento dos recursos de potência e flexibilidade


Plano da Operação Energética - PEN 2025 - ONS

Amplitude de geração hidrelétrica deve superar 50 GW até 2029.

A amplitude de GH prevista em 2027 já aconteceu em 19/01/2025.

Plano Decenal de Expansão - PDE 2034 - EPE

Déficit de potência já a partir de 2027, violação dos critérios de garantia de suprimento de potência

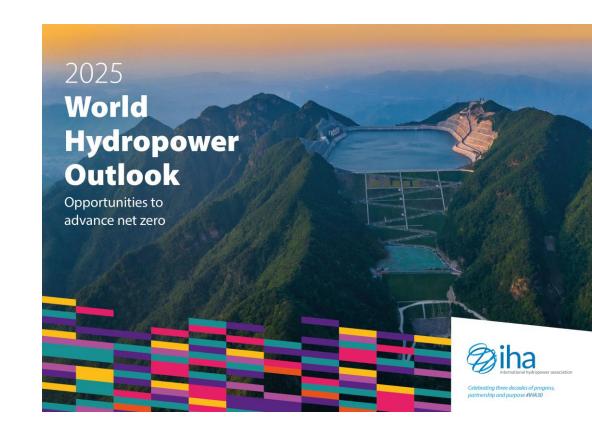
Necessidade acumulada de potência de 10 GW em 2030 e mais de 35 GW em 2034.

Oportunidade: novas tecnologias de armazenamento no Brasil

As hidrelétricas podem contribuir para a solução dos desafios

- **7 GW** em ampliações (5,5 GW cadastrados no LRCAP 2026, 12 projetos)
- 11 GW em repotenciações de usinas existentes
- (38 GW em hidrelétricas reversíveis (SAEH)
- **30 GW** em novos reservatórios em fase de estudos e processo de licenciamento ambiental
- Total: 86 GW novos

 (além de 110 GW existentes)



Sistema de Armazenamento Hidráulico (SAEH) no mundo

Usinas reversíveis – Pumped Storage Hrydropower

- 189 GW em operação no mundo.
- 105 GW em construção em todo o mundo, sendo mais de 90 GW somente na China;
- IHA estima que **90 GW possam ser adicionados até 2030**, elevando a capacidade global para cerca de **280 GW**, aumento de quase 50%.

Diretrizes Legislativas para política pública de armazenamento

- Soluções de armazenamento são vetores essenciais de modernização do setor elétrico.
- Necessário implementar arcabouço legal e regulatório que:
 - estabeleça diretrizes claras para viabilização das tecnologias;
 - o garanta racionalidade econômica e coerência sistêmica;
 - assegure preços justos aos consumidores.
- Incorporação dessas soluções deve ocorrer **sem distorções** e **sem subsídios**, atendendo rigorosamente às **necessidades do sistema** e valorizando:
 - eficiência operacional e econômica;
 - sinalização adequada de preços;
 - alinhamento às necessidades do sistema elétrico.
- Armazenamento hidráulico: conta com parque de 110 GW em hidrelétricas, baseia-se em know-how nacional consolidado; apoiado por cadeia industrial totalmente brasileira.

Propostas Legislativas em pauta

A Abrage **não apoia** propostas que permitam sistemas de armazenamento:

- o em instalações de **consumidores sem supervisão e coordenação pelos operadores de rede,** o que pode ampliar a já expansão desordenada da matriz;
- que se viabilizem com base em subsídios;
- o que distorçam a competição e penalizem os consumidores.

A Abrage **apoia** propostas que permitam sistemas de armazenamento:

que acolham o interesse e disponibilidade dos agentes investidores, incluindo consumidores, balizados rigorosamente pela necessidade do sistema;

- com supervisão e coordenação pelos operadores de rede;
- que se viabilizem com base sinais de preços adequados que reflitam a realidade da operação;
- Que tenham alocação justa e equilibrada de custos e riscos entre investidores e consumidores.

Propostas apoiadas pela Abrage para o Sistema de Armazenamento de Energia Hídrico (SAEH) – Emenda 44

Contratação em Leilões de Reserva de Capacidade (LRCAP), promovidos pela ANEEL.

Montantes definidos pelo MME, com estudos da EPE atendendo a critério de suprimento definido pelo CNPE.

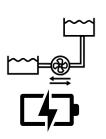
EPE passa a ter competência para realizar estudos, obter licenciamento ambiental e manifestação de disponibilidade hídrica para SAEH com custos ressarcidos.

EPE – cadastro, análise e habilitação para LRCAP.

- Início de suprimento entre 3° e
 10° ano após Contratação.
- Prazo máximo de suprimento de 35 anos

Possibilidade de utilização de recursos de PD&I para estudos, levantamentos, projetos para concepção de SAEH, com custos ressarcidos ao PD&I.

O que precisamos:


Planejar a expansão de acordo com os recursos que o sistema demanda.

Eliminar subsídios que já cumpriram seu papel no desenvolvimento de tecnologias.

Valorizar os atributos das fontes e remunerá-las pelos recursos que disponibilizam ao sistema, como flexibilidade, potência e serviços ancilares.

Investir nos **Sistemas de Armazenamento de Energia Hídrico** (SAEH) de grande escala e de longa vida útil e baterias de pequena e média escala (menor vida útil).

Sinais de preços corretos:

Competitividade

Eficiência

Modicidade

Sinalização de investimentos Estabilidade e Confiança.

SÍNTESE: Precisamos planejar urgentemente o hoje para não nos arrependermos em um futuro próximo. Decisões no setor elétrico precisam de visão de longo prazo.

ENERGIA DAS ÁGUAS: MOVENDO O BRASIL, CONTRIBUINDO PARA UM **PLANETA MAIS** SUSTENTÁVEL.

Obrigada!

Marisete Pereira

Presidente-Executiva

□ abrage@abrage.com.br

www.abrage.com.br

