Considerações sobre o Emissário de Efluente de Aparecida do Taboado – MS.

Prof. Dr. Luiz Roberto Trovati

Objetivo

- Expor informações do nosso parecer sobre o tema;
- Trazer luz e informações sobre a questão das ondas geradas pelo vento em lagos;
- Relatar o fenômeno da difusão da pluma em águas rasas;

- Apresentar alternativas para a solução do conflito.

DIFUSÃO DA PLUMA

 Zona de Mistura ou Comprimento de Mistura corresponde à distancia, em metros, entre o ponto de lançamento do efluente tratado e o ponto em que o rio atinge uma mistura homogênea.

Lançamento de efluentes em rios:

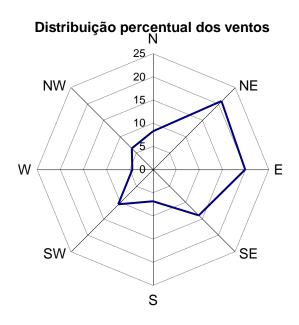
 A difusão da pluma pode ser facilmente calculada a partir dos parâmetros do ponto de lançamento, de valores de velocidade do rio e o coeficiente de turbulência transversal.

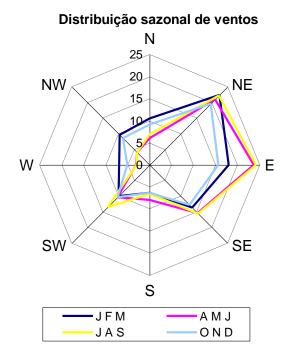
Lançamento de efluentes em lagos ou reservatórios:

A difusão da pluma é uma questão mais complexa, exigindo modelagem que considere também a convecção do efluente em razão da diferença de temperatura entre o efluente e a água do lago, o perfil de velocidade da corrente do fundo até a superfície e a altura da camada limite de mistura na superfície provocada pela advecção das ondas geradas pelo vento.

EFEITO DE VENTO E ONDAS

- Para corpos d'água bidimensionais (lagos, estuários, baias, etc.) as velocidades da água são bem baixas, e o vento é o fator mais importante na reaeração.
- Lagos e reservatórios são bastante diferentes dos rios por causa das velocidades muito baixas e de profundidades grandes.
- Esses dois fatores fazem com que a estratificação vertical ganhe importância, já que nos reservatórios os níveis de turbulência causada pelo escoamento são relativamente baixos o que pode inibir a capacidade do reservatório de se misturar verticalmente.




EFEITO DE VENTO E ONDAS

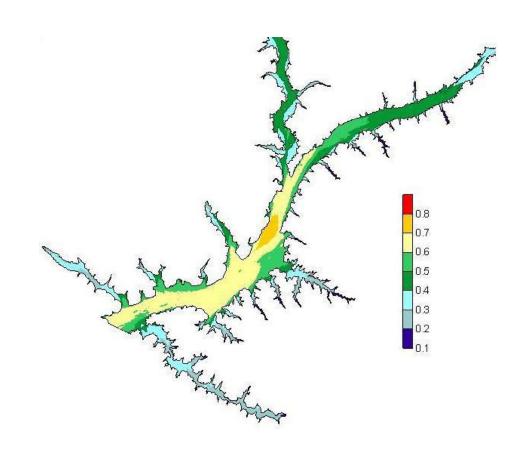
- No presente caso é muito importante procurar estabelecer os efeitos de vento e ondas associados à dispersão do efluente lançado no lago, na direção e sentido do deslocamento predominante da zona de mistura.
- Nas águas rasas a circulação é predominantemente horizontal, causada pela advecção de vento e ondas.
- O vento é quem induz a produção de ondas nos lagos.

м

EFEITO DE VENTO E ONDAS

Prevalência de ventos soprando das direções NE e E, seguidos pela direção SE.

Distribuição percentual de ventos: a) média anual; b) média trimestral. (Estação Ilha Solteira – CESP, dados do período 1970 a 1997)


EFEITO DE VENTO E ONDAS

Medição de ondas com ADCP no lago de Ilha Solteira. ADCP – Acoustic Doppler Current Profiler

M

EFEITO DE VENTO E ONDAS

Mapa de ondas máximas, em metros, previstas no reservatório de Ilha Solteira.

CONCLUSÕES E RECOMENDAÇÕES

- O presente parecer não pretende contestar qualquer estudo ou projeto sobre₁a dispersão dos poluentes no lago do reservatório de Ilha Solteira.
- A intenção de colaborar para a solução do conflito, apresentando aspectos técnico-científicos de natureza pouco estudada, caso das relações vento x ondas em águas rasas, e que aparentemente deixaram de ser tomados em conta no presente caso.
- Recomenda-se validar o projeto que definiu o ponto de lançamento, com um teste de traçadores (Rodamina) para avaliação da difusão da pluma.

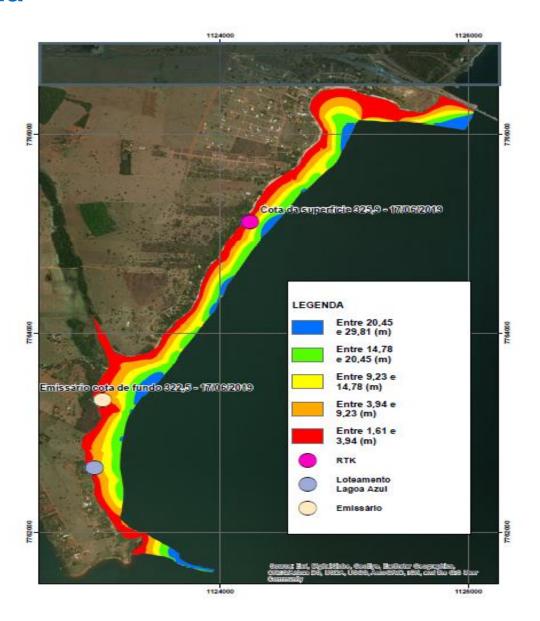
м

CONCLUSÕES E RECOMENDAÇÕES

- Ao se considerar, durante a modelagem da dispersão da pluma, os parâmetros de vento e onda, bem como a estratificação do perfil de velocidades, seria esperado como resultado uma diminuição dos valores de diluição, que se concentraria principalmente na camada superior da coluna líquida
- Se for verificado que o projeto que definiu a atual posição de lançamento não levou consideração as condições de contorno citadas para o cálculo da diluição, seria recomendável que fosse revista a localização atual do ponto de lançamento, pois torna-se provável a hipótese de que a diluição prevista fique abaixo das exigências do nível de balneabilidade.
- Caso esta possiblidade seja verificada, seria necessário estender a parte submersa do atual ponto de lançamento do efluente, situado a cerca de 130m da margem, para uma distância que garanta que a diluição, nas condições de escoamento resultantes das condições de contorno acima referidas.

EMISSÁRIO

Vista do Balneário


Vista do Balneário

Local de Desague do Emissário

Batimetria

Agradeço pela atenção

Teoria da Dispersão

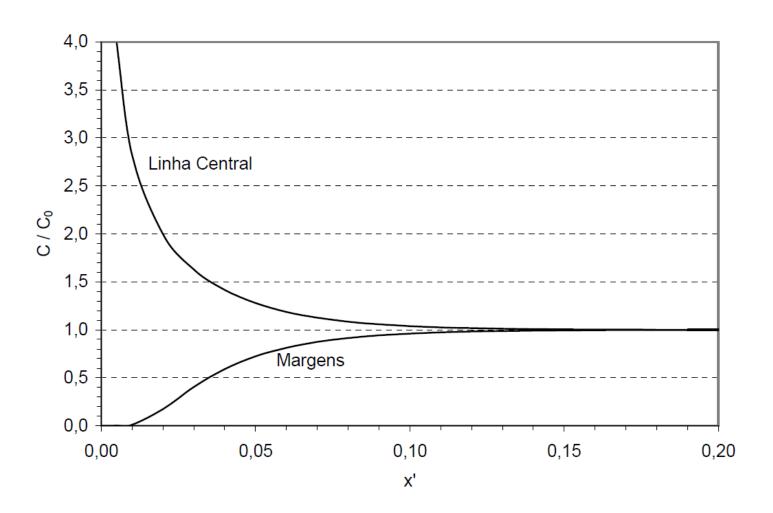


Figura 7.28: Concentração adimensional ao longo da linha central da pluma e junto às margens, resultantes de lançamento contínuo de efluente no centro do rio.

Variáveis definidas na eq. 7.92.

Teoria da Dispersão

Um resultado interessante que se observa na figura 7.28 é a distância necessária para o efluente misturar-se completamente na seção transversal. A partir de x' = 0,10 as duas curvas aproximam-se do valor unitário, indicando que a concentração, para todos os fins práticos, é igual à concentração média C_0 .

Assim, para lançamento no centro do rio, a distância para mistura completa na seção transversal é dada por:

$$x' = \frac{L \,\varepsilon_{yy}}{\overline{u} \,W^2} = 0.1 \qquad \Rightarrow \qquad L = 0.1 \,\frac{\overline{u} \,W^2}{\varepsilon_{yy}}$$
 7.96

____ Distância para mistura completa de lançamento nas margens

A solução adimensional da figura 7.28 pode representar um lançamento de efluente junto à margem de um rio com largura W com facilidade, pois a situação é equivalente ao que ocorre num lançamento na linha central de um rio com largura 2W.

Temos então, para o valor x' = 0,1 a seguinte condição:

$$x' = \frac{L \,\varepsilon_{yy}}{\overline{u} \,(2W)^2} = 0,1 \quad \Rightarrow \qquad L = 0,4 \,\frac{\overline{u} \,W^2}{\varepsilon_{yy}}$$
 7.97

A equação 7.97 mostra que, embora o valor adimensionalizado seja o mesmo, o comprimento necessário para homogeneizar um lançamento junto à margem é quatro vezes maior do que o requerido pelo lançamento central.